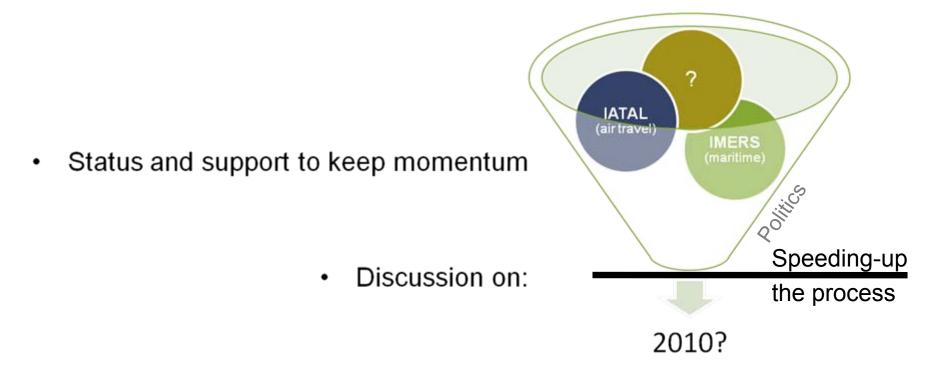


Bunker Fuel Emissions and Adaptation Funding

Differentiated mitigation of bunker fuel emissions and innovative financing for adaptation UNFCCC COP 13 Side Event, Bali 05 December 2007

Dr Benito Müller

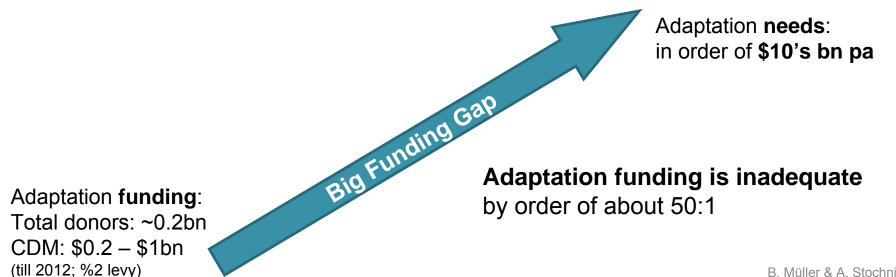
Director (Energy & Environment) OIES, Oxford, UK benito.muller@oxfordenergy.org


Dr Andre Stochniol

Founder & Director IMERS, London, UK andre@imers.org 0817 083 1178 (at COP13!)

Agenda

- Outline of key proposals and issues:
 - IATAL, International Air Travel Adaptation Levy (Adaptation)
 - IMERS, Int. Maritime Emission Reduction Scheme (**A** + **M**itigation*2)



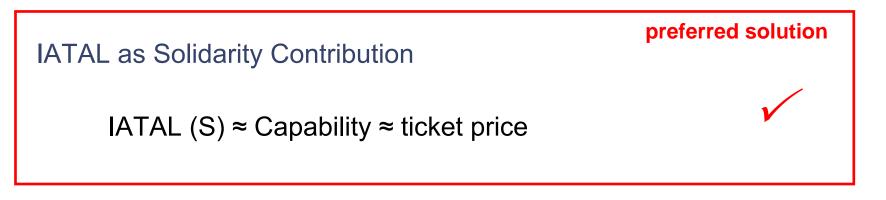
* Mitigation*2, means near- and long-term emission mitigation, including industry improvements.

Financing Background

- **Current financial mechanisms are inadequate** in both design and scale
 - New innovative means are needed to generate additional funding at scale
 - A supra-national approach would avoid competition with domestic budget priorities
 - Adaptation to climate change is crucial to developing countries
 - The poorest countries are most vulnerable and will be hit hardest by CC
 - Mitigation cannot be substitute for adaptation, and vice versa
 - For international transport longer-term mitigation is as important as reducing emissions today (mitigation*2 needed; rapid emissions growth, lack of substitutes)

IATAL — an outline proposal for an International Air Travel Adaptation Levy

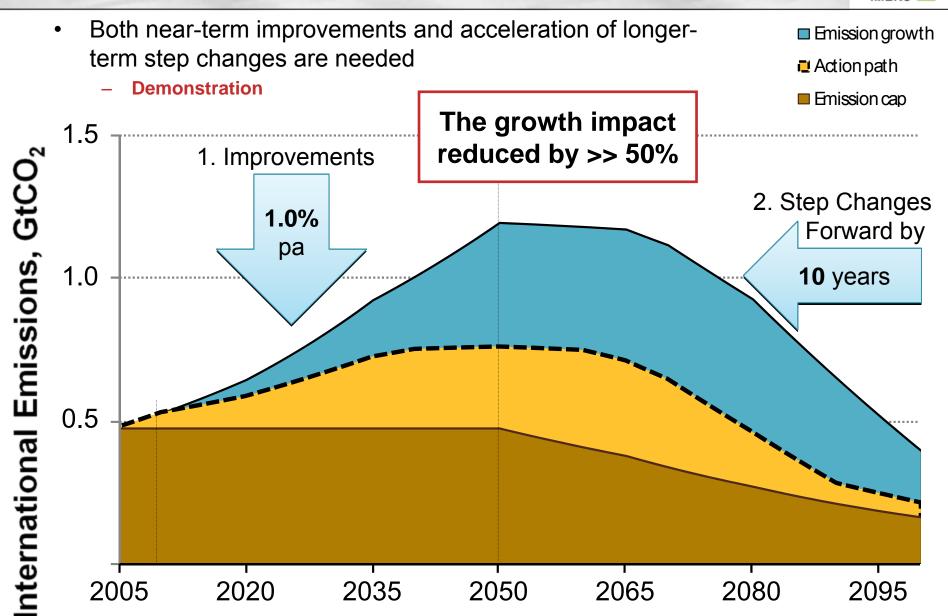
Benito Müller and Cameron Hepburn



Oxford Institute for Energy Studies EV 36 October 2006

IATAL as Mitigation Instrument

IATAL (M) \approx Responsibility \approx per passenger flight emissions


IATAL as both

IATAL (MS) ≈ Responsibility × Capability

- Passenger numbers have increased by 45% over the last decade alone, and in 2004 airlines carried 1.9 billion scheduled passengers
- An average levy of €/\$5 per ticket would generate around €/\$10billion
- A 2 percent levy assuming an average ticket price of €/\$ 200/500 would generate €/\$ 7.6/19bn annually
- Disbursement possibly through Adaptation Fund under Kyoto Protocol

Importance of Long-term Mitigation – shipping example Financing Innovation to Bring Forward Step Changes ...

IMERS

Ambition and Goals:

- Address **differentiated** priorities in one cohesive supra-national scheme
 - Halve maritime GHG emissions (through near- and long-term mitigation)
 - **Reduce the gap** in financing for adaptation (in \$bn annually)

<u>Cost:</u>

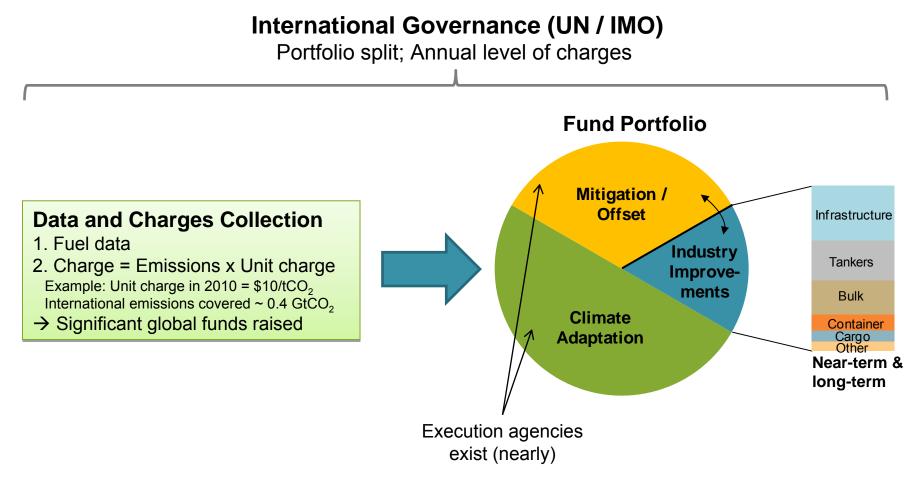
Adding \$1 to price of \$1,000 of imported goods (=0.1%)

Key design details:

- No allocation of emissions to countries, one aggregated emission cap
- **A fund** established to invest in mitigation of shipping GHG emissions, and to provide contributory funding to climate change adaptation in developing countries
- **Double mitigation:** Reduction of GHG achieved by near-term technical and operational improvements and accelerating long-term breakthroughs
 - Mitigation outside the sector to optimize cost efficiency added
- A hybrid economic instrument based on harmonized charges & a quantity target
 - A charge-and-cap approach (see supporting slide # 18)

Complying with Calls from China, Saudi Arabia & Others How?

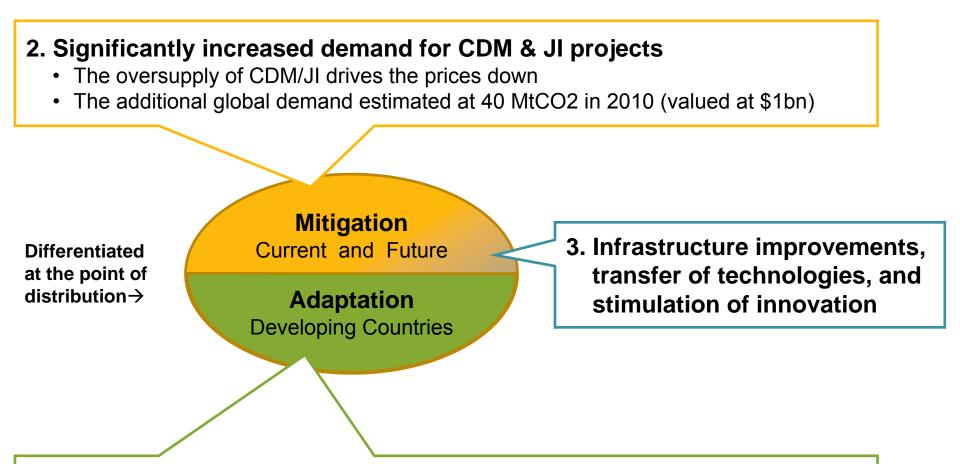
1. Mitigation


→ Halving int. maritime emissions which are #9 WW (when compared with countries)

- 2. Adaptation
 - \rightarrow Reducing financing gap by \$2bn annually, operational BEFORE 2012
- 3. Technology Transfer & Innovation
 - → Breakthroughs Technology Fund, Infrastructure Improvements
- 4. Adequate & predictable funds
 - \rightarrow Funds from emission charge, set 1 year in advance by a formula; +\$4bn/pa
- 5. Not curtailing growth of developing countries
 - \rightarrow Minute impact on end prices of 0.1%, mostly in developed countries (70%)

-> Differentiated approach at the point of distribution rather than collection

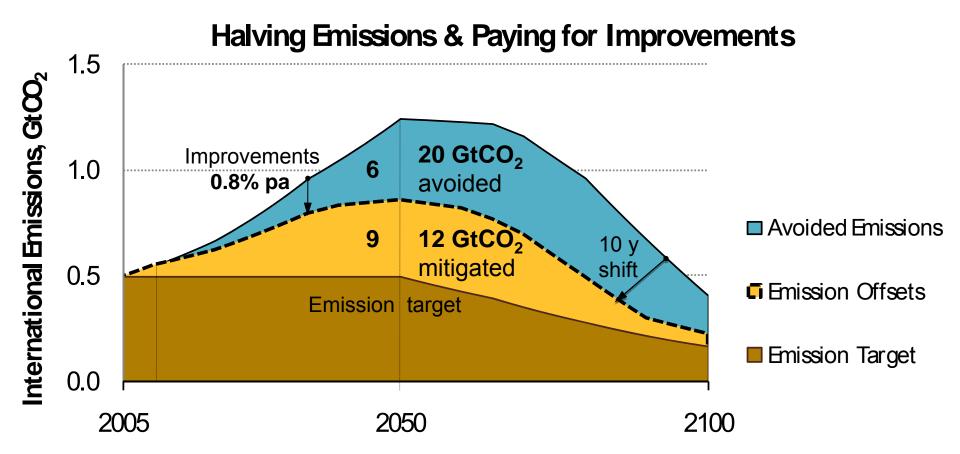
Governance, Collections and Investments Sample details


Adding \$1 to price of \$1,000 of imported goods shipped by sea → End customer impact on prices: 0.1% only (transport charges +3%).

Unit charge depends on emissions growth above the cap/goal and the forward market price for CO_2 (assumed as $25/tCO_2$). Unit maritime emissions charge for 2010 is estimated at 10/tCO2. Recovered through increased transport charges. Total funds raised will exceed \$4bn per annum.

Benefits to Developing Countries

Common but differentiated responsibility principle \rightarrow delivered in a new way



- 1. Major funding for adaptation to climate change
 - Estimated at \$2bn per annum (assuming equal split of funds & carbon market price of \$25/tCO2)
 - Thus far the international community has promised \$200m for adaptation measures, but the required funds are estimated at tens of \$billions (circa 50:1 gap ratio)

Environmental Benefits

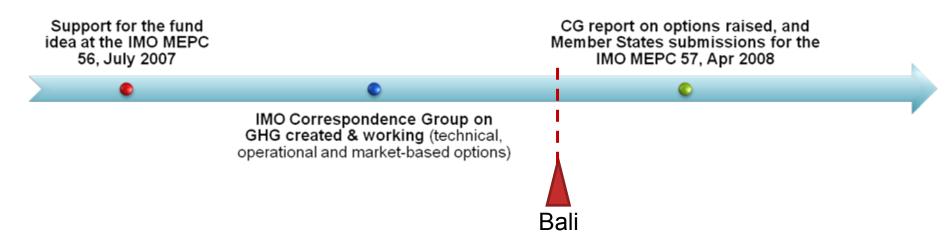
- Achieving 0.8% annual industry improvements and bringing forward the step changes by 10 years will more than halve the total shipping emissions above the emission target
 - Results by 2050^{*}: avoided emission: 6GtCO₂, mitigated (offset): 9GtCO₂, total: 15 GtCO₂
- Cost of 3y delay: 0.7GtCO₂ = \$17bn by 2050 alone
 - Equivalent nearly to 1.5 years of emissions; see for details slide # 18.

*Note: there is no trade-off with SO₂ emissions; they will also be reduced through the increased fuel efficiency.

Low Requirements → High Practicability Longstanding data challenges eliminated; ATTRACTIVENESS → slide 19

SC	CHEME DESIGN						
1.	Emission allocation:	(None ; SBSTA option 1 – no allocation)					
2.	Allowances distribution:	(None needed)					
3.	Participating entities:	Fuel payers; ship managers and/or suppliers for reporting					
4.	Reporting, Verification and	Direct electronic; compliance enforced in selected ports, both for the					
	Compliance:	provision of data and payment of charges					
IM	PLEMENTATION						
	FEASIBILITY						
1.	Accurate data & availability:	Emission growth: available					
2.	Minimum operational data:	Fuel data, used or delivered: available					
3.	Reuse of existing work, and	Voyage data for validation; CO ₂ index from real data once the scheme					
	procedures:	operates, used as a performance measure for ships, routes etc.					
4.	Authorities and their roles: IMO for governance; World Bank, or similar, to manage adaptation funding						
SC	CHEME PARAMETERS						
1.	Emission target:	Yes; calculations done for a target at 2005 level, constant till 2050					
2.	Emission baseline and/or	Baseline not needed (currently commercially inadequate)					
	emission growth:	Emission growth only needed (average 2.1% pa used till 2035)					
3.	Grouping for equity:	Bubbles for containers, bulk, tankers, etc., could further improve the					
		scheme equity and speed up implementation					
Die	Discussed at the Werkshen on amissions from aviation and maritime transport (Nerway, Oalo, 4.5. Oct 2007)						

Discussed at the **Workshop** on emissions from aviation and maritime transport (**Norway**, Oslo, 4-5 Oct 2007) Report at: <u>http://www.iisd.ca/YMB/sdosl/</u> Materials: <u>http://www.eionet.europa.eu/training/bunkerfuelemissions/</u>


Workshop follow-up: come to room Tidal, GH, Monday, 10 Dec, 18:00 – 19:30h

• IMO multilateral process is in progress

- Concept submission to the IMO MEPC 56 by Norway (a high level submission)
- Significant support for the idea at MEPC, limited reservations (hard work behind)

» MEPC, the influential Marine Environment Protection Committee

To keep momentum

- More leadership, coordination and "can do" attitude within countries is needed
 - Especially pull for adaptation from developing countries
 - Policy coordination within developed countries (maritime, climate change, etc.)
- A dedicated project to build trust and shape the solution?
 - Never time for quality discussions

Wrap-up & Discussion

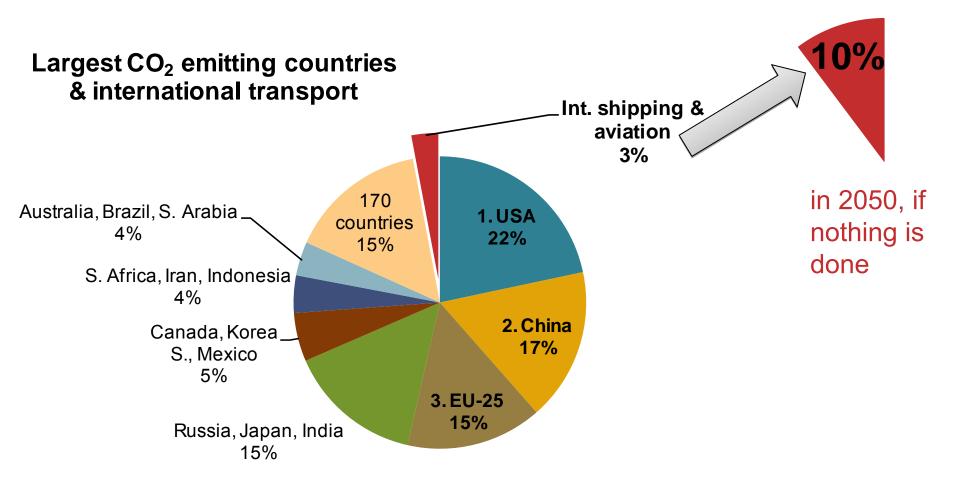
- Adaptation funding can be addressed at scale with innovative instruments
- Combining mitigation with adaptation through a charge-and-cap delivers:
 - Maximum efficiency with minimum rate
 - Near-term emission reductions, AND stimulation of longer term technology innovation & transfer
 - AND reduces the adaptation financing gap by \$2bn/pa WITHOUT constraining economic growth!
- The challenge and opportunity for the proposal on the IMO table;
 - Speed-up through quality discussions / consultations:
 - Perhaps through a project approach?
 - If a global approach is not found, complex and expensive solutions are likely to emerge (such as trying to include shipping in a regional trading scheme)
 - Local funds likely to go to priorities different than development, climate change and even shipping improvements
- Discussion
 - Shouldn't this idea be an "agent for change" and be implemented in 2010?

X in 2010?

IMERS

IATAL (air travei)

Additional Materials


Backup slides and further information

More details: <u>www.IMERS.org/bali</u> Contact at COP 13: 0817 083 1178 (mobile)

Tackling International Transport CO₂ Emissions ...

Emissions are Far from Small*, and Grow Rapidly

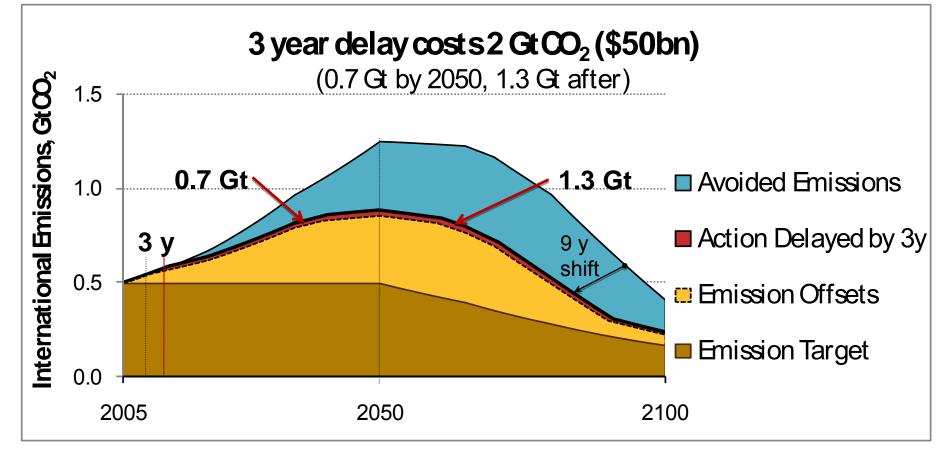
* International maritime CO_2 emission accounts "only" for ~1.8% of total emissions from fossil fuels. However, it is **#9 if compared with the largest emitting nations and its share can triple by 2050**. International aviation emission at 1.2% is #16, and its share can increase 5 times by 2050. Exempt from taxes, and unaffected by the Kyoto Protocol.

" Charge-and-cap" is a name I gave to:

- A novel hybrid economic instrument based on a harmonized charge:
 - Using a carbon price established by the large emitting industries
 - Delivering quantity target through a "clearing house" for a sector or its part (bubble1)

² Benefits of a GHG tax could be 1/3 higher than those of cap-and-trade, on national level. Source: US CBO, 2007.

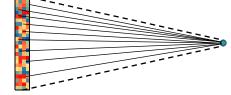
¹ Bubble – a regulatory concept whereby several emitters are treated as if they were a single emission source.


High Attractiveness Summary

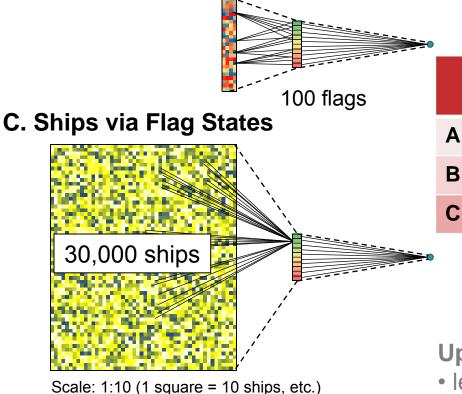
SCO	OPE AND GOALS				
•	Geography:	Worldwide			
•	Participants:	All vessels > 400 GT			
•	Emission target:	Global, or per vessel bubbles (containers, bulk, tankers,)			
•	Additional goal:	Adaptation to climate change in developing countries			
•	Emissions:	International, CO ₂ only at the beginning			
PO	LITICAL APPEAL				
•	Common but differentiated	Through financing policy for adaptation; differentiation at point of distribution rather than			
	responsibility:	collection			
•	Impact on competitiveness:	None in sector; negligible outside shipping			
•	Benefits to participants:	A hassle-free long-term solution, increased cash flow, compliance easily verifiable, long term investment clarity, better image of shipping			
•	Legal basis & precedents:	Could be under MARPOL; IOPCF - a precedent for a direct fund			
COSTS		(for 2010, key assumed prices: fuel \$300/tHFO, carbon \$25/tCO2)			
•	Price impact:	Low: 0.1%, equivalent to adding \$1 to price of \$1,000 of imported goods			
•	Participant costs:	Negligible (20 minutes reporting time for ship managers per month)			
•	Unit emission charge:	\$10/tCO2 (linked to emissions and carbon price)			
•	Operational costs:	Under 5% (a centralized solution)			
EFF	ECTIVENESS	(assuming 500 MtCO ₂ baseline in 2005; for 1GtCO ₂ – multiply results by 2)			
•	Emission mitigation:	Mitigation of 15 GtCO ₂ by 2050 (50% of it is emission avoidance)			
•	Improvements:	0.8% - 1% annually, and a technology breakthroughs fund			
•	Adaptation	\$2bn/pa, for developing countries (e.g. contribution to the Adaptation Fund)			
•	Market linkages:	Cost-effective through usage of carbon markets, and a dedicated maritime emission registry			
FLE	XIBILITY				
•	Mechanisms used:	CDM, CERs without limits; also programmatic CDM for increased quality			
•	New and existing ships; and	Applies to both existing and new ships; no problems with including new entrants as scheme is			
•	new entrants: Adjusting to new realities:	based solely on charges, rather than allowances			
		Charge annually; funding policy reviewed and adjusted periodically by IMO			
•	Starting small, and learning by doing:	Can be limited to ship type or size threshold; easy scaling up thanks to the harmonized charge that does not vary with the number of participants A. Stochniol 19			

Cost of 3 years delay = 4 annual emissions = \$50bn (by 2100) Action can halve the impact and pay for improvements!

- IMERS
- Let's assume emission reduction potential of 0.8% pa, delayed by 3 years:
 - Improvements start 3 years later
 - Bringing forward step changes is reduced by 1 year (from 10 to 9)
 - The impact and cost of delay is shown below


Fuel reporting options & implementation costs

→ Reduce reporting complexity and costs to participants


A. Ship Managers Direct

1,000 ship managers/ companies

1 database (fuel used \rightarrow CO₂ emissions calculated)

B. Ship Managers via Flag States

0					
		Time to Results	Reporting Effort	Project Risk	COST Relative
	Α	4 months	1	5%	1
	В	24 months	5	20%	100
	С	36 months	20	30%	1,000

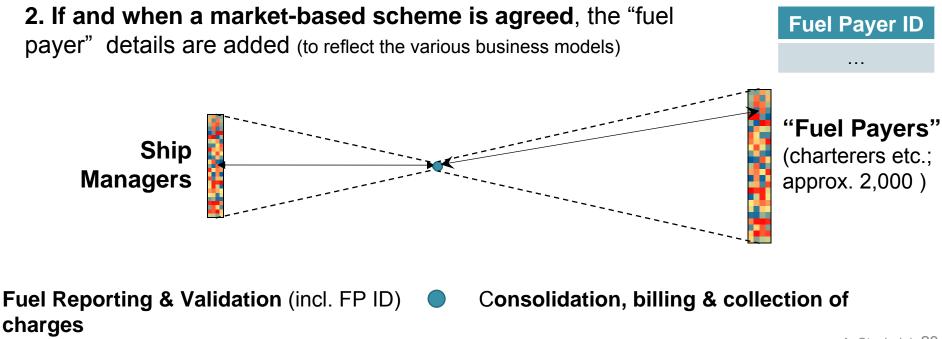
Say: \$1mln, \$100mln and \$1bn Confidentiality and security are best for the simplest option.

Up-stream options, through suppliers

less flexible – not shown

Reporting alternatives; Verification and Enforcement

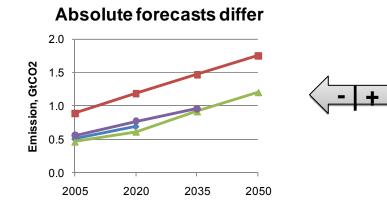
 \rightarrow Reuse available data and services


- Up-stream approach
 - Data and charges collected through fuel suppliers
 - In theory simpler but in practice probably not, also less flexible:
 - Very similar to tax on fuel, with its negative perception
 - More difficult to implement a supra-national approach, politically and operationally
 - Difficult to implement performance-based charges or incentives
- Secondary data
 - Data from fuel suppliers can be used for validation and proving the overall scheme consistency
 - Voyage data could be used for error validation (AIS, and similar)
- Verification and Enforcement
 - At selected ports
 - For submission of correct reports (versus bunker delivery notes, for instance)
 - For payment of charges
 - Raised through software tracking; spot checks

- 1. Foundation Reporting of fuel per voyages completed in a given period (month)
 - Compulsory data (total fuel)

IMO #	Voyage	End Date	HFO	DO/GO
1234567	15	25 Jun 07	4,876	64

- Optional entries: Call sign, Location, Distance (nm), Cargo (tons), Cargo (alt unit)
 - If collected the IMO CO₂ index could be calculated and used

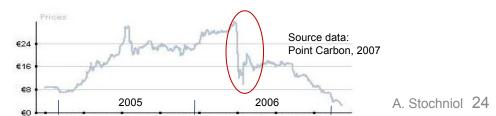


(separate flows reduces risk of fraud)

Relative scheme parameters might be best

 \rightarrow Use reliable data

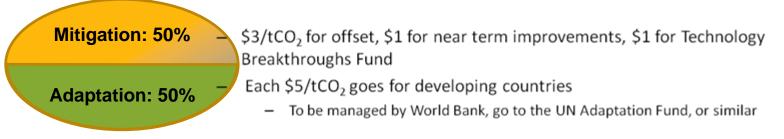
- A scheme that relies on relative parameters, such as emission growth, has many advantages
 - Issues of an unreliable emission baseline are avoided
 - Starting small and including new participants are easy
- Example for the shipping CO₂ forecasts

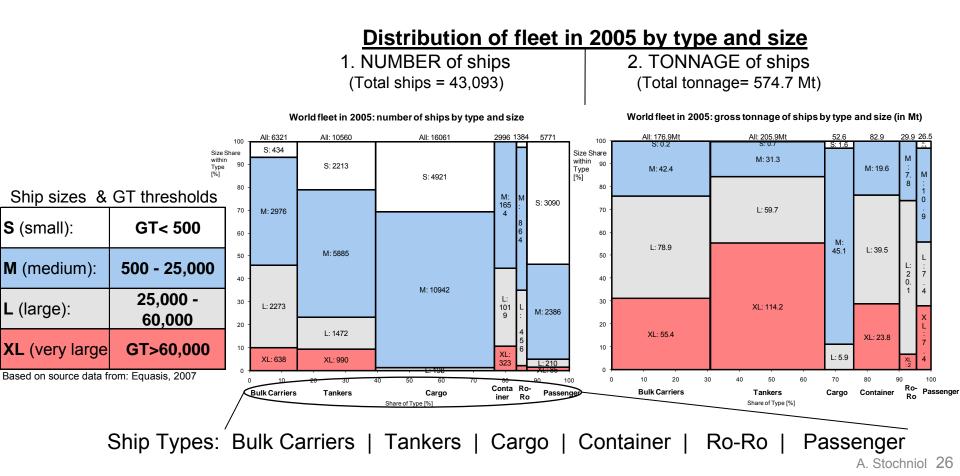

Normalized forecasts are very similar:

(after excluding military vessels, not present in all)

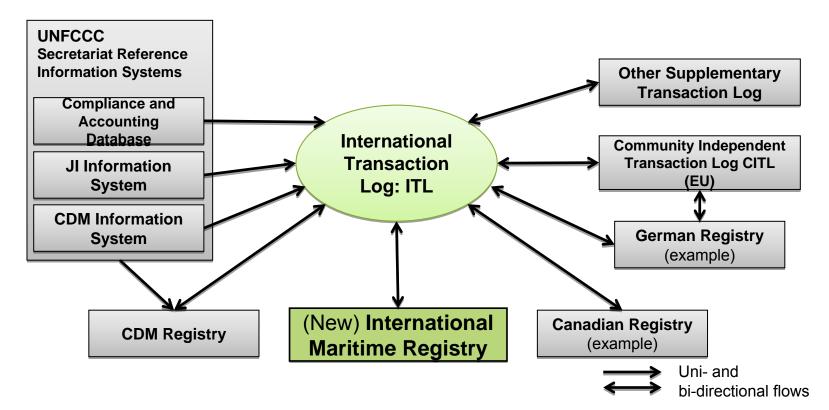
2005	2020	2035	2050
1	1.36	-	-
1	1.35	1.88	2.42
1	1.32	1.97	2.58
1	1.39	1.92	_
1	1.35	1.93	2.50
	2005 1 1 1 1 1	11.3611.3511.3211.39	1 1.36 - 1 1.35 1.88 1 1.32 1.97 1 1.39 1.92

Differences within 3%


• Efficiency depends on reliable data; a lesson from the EU ETS:



- Minimizing costs, maximizing benefits (example)
 - International transport is crucial for trade and sustainable development
 - Impact on end user prices:
 - \$1 for \$1,000 of imported goods, i.e. 0.1% (shipping costs of goods +3% only)
 - Split of charges at the initial years (potential):
 - \$10/tCO₂ would suffice (= 40% of carbon price of \$25/tCO₂)


- Sample coverage for ships > 500 GT (recommended option >400 GT, as per MARPOL)
 - 75% by number of ships (32 thousands of ships)
 - 99% by tonnage of ships (570 millions GT); around 95% by emissions
 - Relevant statistics for ship number and tonnage are aggregated below (for cargo carrying ships)
 - Around 1,000 ship managers

International reporting and mitigation compliance

 \rightarrow Integrate in a flexible manner

• Addition of a single maritime registry to the networks of linked registries will guarantee compliance with the current and any future GHG regime

- International and domestic reporting
 - GHG emissions from the domestic sectors of sea-going ships could be provided/aggregated by the scheme for the parties and/or UNFCCC (assuming no change in the IPCC rules)

Data conclusions

- GHG data issues can be addressed with a charge-and-cap instrument
 - Emission allocation and allowances distribution \rightarrow eliminated
 - Absolute emission baseline \rightarrow not needed; emission growth used instead
 - − Reporting \rightarrow simplified; effort for participants \rightarrow reduced
 - Resulting lower costs and simplicity translate to \rightarrow better compliance

- Data and policies must work cost-effectively together, and soon
 - Devil is in details the sooner some policies are reviewed from the implementation and cost perspectives the better
 - IMERS delivers maximum efficiency at the lowest cost to industry, and practically no impact on the competitiveness

- No allowances to manage, no individual cap to comply with, services provided, no set-up costs
- No impact on international competitiveness
 - Level playing due to global implementation
- Increased cash flow (EBIDTA) as a result of improved operations and reduced fuel
- Reduced risk of fuel disputes
- Compliance easily verifiable
 - Via fuel and voyage data, and analytical tools
- Reduced risk of multiple regulations
- Benefits of better image (clean transport, social responsibility)

Climate change action makes good business sense